
 

 

 

 

 

 

How to Remove Chronic Optimism from your Compound and Portfolio Evaluations while 

Creating More Value 

 

 

 

      

 

 

 

 

 

 

When selecting compounds to advance in clinical trials, buying or selling an asset, sequencing 

trials or allocating resources, you rely on estimates of compounds’ values.  Why are high 

evaluations often optimistic?  Why are portfolios perennially overvalued?  Why do you suffer 

reoccurring disappointment as compounds and portfolios achieve fractions of their estimated 

values?  Many managers blame the evaluation process, accusing it of optimism, but persistent 

optimism arises even when evaluation processes are unbiased.  This paper explains why and 

predicts that, on average, unless you adjust them, forecasts of blockbuster sales are 100% too high 

and assessments of phase III portfolios are 40%-50% overvalued.  I present a solution to this 

problem, one developed by management scientists, and used by executives who manage oil and 

gas exploration.  Importantly, the fix boosts productivity as well, possibly raising portfolio value 

by 10% or more.  This paper eschews mathematics to focus on explanation and understanding.   
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How to Remove Chronic Optimism from your Portfolio Evaluations while Creating More 

Value 

 

 

When allocating resources, sequencing clinical trials, selecting compounds to advance 

downstream, buying and selling assets, managing portfolio risk or maximizing portfolio value, 

do you forecast the revenues or profits compounds might produce if they survive development?  

How do errors in these forecasts affect your decision-making and results?  How can you improve 

your decisions and create more value? 

 

I am not a pharmaceutical executive, and the ideas I present below come, not from experiencing 

your responsibilities, but from a portion of probability theory called the algebra of random 

variables.  The theory’s prognosis is cogent and consequential. 

1. On average, forecasts of high net present value (NPV) are optimistic, and this optimism 

increases with the size of the forecast.  A drug in development that is predicted to be a 

blockbuster (if it launches), on average, produces only half of its estimated profits.  

2. NPV and expected NPV (eNPV) consistently overestimate portfolio value.  For a 

portfolio of phase III compounds, the overestimate is commonly 40%-50%. 

3. The errors in forecasts of NPV and eNPV harm project selection and reduce productivity 

by at least 15%.  This reduction occurs whether you use simple selection methods, like 

rankings and cutoffs, or sophisticated ones, like portfolio optimization. 

Fortunately, a solution exists:  

4. Adjusting NPV estimates by using information about classes of compounds, derived from 

historical data, eliminates the first two problems and reduces the third one by 50%. 

 

These implications arise from three qualities of drug development: (1) the NPVs of drugs are 

highly skewed, (2) NPV forecasts are imprecise and (3) forecasting errors scale with profits.  

You are not alone in suffering the consequences of these characteristics.  The executives who 

guide oil and gas exploration face them as well, and they have a solution you can use (Begg and 

Bratvold 2008; Schuyler and Nieman 2008; Chen and Dyer 2009). 

 

I introduce each of these qualities, show how they create the above problems and then present 

the solution to you.  The presentation builds intuition and understanding, and if you desire, you 

can find the mathematics in my academic paper (Summers 2018). 

 

The skewed distribution of NPVs: Pharmaceutical profits are highly skewed.  Grabowski et al. 

(2002) report that 10% of drugs produce 50% of the industry’s profits, while 30% of compounds 
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yield 80% of the profits.  Figure 1 presents a probability distribution matching these qualities.  Its 

horizontal axis is in units of the average NPV, denoted as 𝑁𝑃𝑉̅̅ ̅̅ ̅̅ .  For example, if you are 

managing the development of oncology compounds, 𝑁𝑃𝑉̅̅ ̅̅ ̅̅  represents the average NPV of an 

oncology drug. 

 

 

 

Figure 1: A highly skewed distribution that illustrates the profits produced by 

pharmaceuticals, reported by Grabowski et al. (2002).  The variable 𝑁𝑃𝑉𝑇 stands 

for true NPV, as opposed to forecasts, which I denote with 𝑁𝑃𝑉𝐹.  The horizontal 

axis is in units of average NPV, 𝑁𝑃𝑉̅̅ ̅̅ ̅̅ , so the average (expected value) of the 

distribution occurs at unit one.  In this dispersal, 74% of compounds have below 

average NPV, and 12% of compounds have values greater than twice the industry 

average.  

 

 

 

Highly imprecise forecasts: By analyzing historical data, Cha et al. (2013) estimate the error in 

predictions of peak sales.  On average, forecasts made two years before launch have errors 

equaling 75% of the peak sales the drugs achieved.  Made when phase III was complete, or 

nearly so, these forecasts exploited strong knowledge of safety and efficacy.  In contrast, when 

you select phase II compounds to advance, you face more uncertainty, especially about patient 

populations, endpoints, biomarkers, dosages, safety, and efficacy.  For these crucial selection 

choices, NPV forecasts may have errors equaling or exceeding 100% of the NPV a drug will 

produce if launched.  Figure 2 illustrates a distribution of forecasting errors with an average error 

(standard deviation) of 100%.  Notice how the distribution centers on a compound’s true NPV, 

𝑁𝑃𝑉𝑇, so the errors are unbiased.  They overestimate 𝑁𝑃𝑉𝑇 with the same frequency and size as 

they underestimate it.  You could add bias to this model, but I wish to show how unbiased 

forecasting errors produce optimistic estimates of NPV and portfolio value (problems 1 and 2 

above). 
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Figure 2: This distribution of compounds’ NPV forecasts (𝑁𝑃𝑉𝐹) is unbiased and 

centered on the true NPVs (𝑁𝑃𝑉𝑇).  The horizontal axis shows the errors in the 

forecasts, with deviations measured as a percentage of 𝑁𝑃𝑉𝑇.  Positive deviations 

are overestimates; negative deviations are underestimates.  The standard deviation 

of the errors is 100%𝑁𝑃𝑉𝑇.  The errors are normally distributed, so about 68% of 

the forecasts are within ±100%𝑁𝑃𝑉𝑇 of their true values and 95% of the forecasts 

are within ±200%𝑁𝑃𝑉𝑇 of their true values. 

 

 

 

Errors scale with NPV: Suppose a drug has a small market and a second drug has a large one.  

Measured in absolute size, forecasting errors are lesser for the small market.  Mathematically, 

you can model the forecasted NPV (𝑁𝑃𝑉𝐹), as arising from the true NPV (𝑁𝑃𝑉𝑇) and a 

forecasting error: 𝑁𝑃𝑉𝐹 = 𝑁𝑃𝑉𝑇(1 + 𝜀), or equivalently, 𝑁𝑃𝑉𝐹 = 𝑁𝑃𝑉𝑇 + 𝜀𝑁𝑃𝑉𝑇.  The 

variable 𝜀 determines the forecasting error.  If 𝜀 = 50%, the forecasting error is 50%𝑁𝑃𝑉𝑇.  

Recall that two years prior to launch, the average error, which is also called the standard 

deviation, is 75%.  This error, which is also called imprecision, is reported in two ways: 𝑆𝐷(𝜀) =

75% and Error = ±75%𝑁𝑃𝑉𝑇. 

 

How can unbiased errors consistently overestimate profits and portfolio value?  The phenomenon 

is called the optimizer’s curse (Smith and Winkler 2006), and it afflicts all project selection 

methods, including simple techniques, like rankings and cutoff values, and sophisticated ones, 

like optimization.   

 

 

Problem 1: Above average forecasts of NPV are (on average) optimistic 

Are you interested in compounds with above average value?  Often, predictions of superior 

worth are optimistic, and these rose-colored valuations harm your portfolio management, 
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including your risk management, selection and canceling of compounds, sequencing of clinical 

trials and allocation of resources. 

 

To see how optimism arises, consider these statements: 

 

A) Most graduate students eat Ramen noodles. 

B) Most people who eat Ramen noodles are graduate students. 

 

Statement (B) switches the ordering of the nouns, from graduate students preceding Ramen 

noodles to Ramen noodles preceding graduate students.  Obviously, statement (B) is incorrect.  

Reversing the order creates an error. 

 

Now consider these statements: 

 

C) An NPV forecast is equally likely to be above or below the true NPV. 

D) The true NPV is as likely to be above or below the forecast. 

 

Traversing from statement (C) to (D) creates the same logical error as in the Ramen noodles 

example, but to understand why we need some details.  Think about Figure 2 and its unbiased 

errors.  It implies statement (C), but only in two circumstances.  First: you randomly select 

compounds to buy or advance downstream.  Of course, instead of rolling dice, you strive to 

choose the best compounds, a subject we address in the next section.  Second: you have a drug in 

development, are going to forecast its NPV, but you have not yet created the forecast.  Consider 

this case. 

 

Before making a forecast, if the assessment process is unbiased, overestimates are as likely as 

underestimates, but once created, the result is only one of these possibilities.  Fortunately, you 

have information to indicate which one: the forecast itself.  Suppose a compound in drug 

development is predicted to produce blockbuster sales (if it survives development).  Likely, the 

stellar estimate arose in one of two ways: (1) the compound is indeed a blockbuster and the 

forecasting error is small or (2) the compound is not a blockbuster and the forecasting error is 

optimistic.  Look at Figure 1.  Few compounds are blockbusters, so the second situation is more 

likely.  Despite accurate (unbiased) evaluations, forecasts of blockbuster NPVs are, on average, 

optimistic. 

 

An analogy illustrates this logic.  Suppose your scientists develop a diagnostic test for a disease 

that afflicts one of every one hundred people.  The test has a negligible false-negative rate and a 

false-positive rate of 5%.  In a hundred tests, you expect to get one true-positive and five-false-

positives, so a person diagnosed with the disease has only a 17% chance (1/6) of having the 
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disease.  Because the disease is rare, a positive test is likely to be a false-positive.  Forecasts of 

blockbuster NPVs are analogous. 

 

How big is this problem?  Figure 3 presents the results of combining Figures 1 and 2 with Bayes’ 

law (which is the correct way to switch the order of the nouns in statements A through D).  Look 

at a forecast of five times the average profit (5𝑁𝑃𝑉̅̅ ̅̅ ̅̅ ), which is a good definition of a blockbuster 

(Grabowski et al. 2002).  Figure 3 estimates that, on average, compounds with such glorious 

assessments produce only 45% of their predicted profits (problem 1 of this paper’s introduction). 

 

 

 

 

Figure 3: The graph shows the bias in forecasts.  The horizontal axis is the 

forecasted NPV (𝑁𝑃𝑉𝐹), measured in units of the average NPV of 

compounds (𝑁𝑃𝑉̅̅ ̅̅ ̅̅ ).  The vertical axis is the expected true NPV (𝑁𝑃𝑉𝑇), 

given the forecast, divided by the forecasted NPV.  This ratio presents the 

expected true value as a percentage of the forecast.  Forecasts of average 

value, 𝑁𝑃𝑉𝐹 = 𝑁𝑃𝑉̅̅ ̅̅ ̅̅ , are unbiased.  On average, predictions of above 

average value are optimistically biased, while estimates of below average 

value are pessimistically biased. 

 

 

 

Figure 3 reveals the following: On average, forecasts of above-average NPV are optimistic, as 

are eNPVs and ROIs made with these forecasts.  Treating such predictions as unbiased will cause 

mistakes when managing clinical trials and drug development portfolios. 
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An additional consequence is subtle.  Suppose an expert tells you that a specific forecast is 

unbiased because he or she used debiasing methods when making the prediction.  This statement 

may be frustrating to a pharmaceutical executive, especially after experiencing numerous 

optimistic evaluations.  The expert’s claim is erroneous.  Debiasing techniques used while 

evaluating assets yield unbiased errors, like Figure 2, and therefore infer statement (C).  

Claiming a specific evaluation is unbiased commits the logical mistake of assuming statement 

(C) implies (D).  In contrast, successful debiasing techniques, including the one presented herein, 

modify an estimate after you make it. 

 

 

Problem 2: Portfolios are consistently overvalued (the optimizer’s curse) 

Are you routinely disappointed by underachieving portfolios?  Do you feel exasperated when a 

decision scientist blames poor results on chance, saying that, while portfolio optimization 

maximizes value, lousy luck can produce bad results?  You are right to be frustrated.  You are 

not suffering ill luck.  You are experiencing the optimizer’s curse, a systematic, optimistic bias 

caused by project selection. 

 

The problem is pervasive, affecting all nonrandom selection methods.  In management science, it 

is called the optimizer’s curse.  In economics, it is called the winner’s curse.  In finance’s 

modern portfolio theory, it is the impact of estimation errors.  In statistics and machine learning, 

it is called overfitting.  Focusing on drug development, whether you select compounds by group 

discussion, project rankings, cutoff values, portfolio optimization or another method, you suffer 

the optimizer’s curse and are thus routinely disappointed by portfolios that produce less value 

than predicted. 

 

When introducing the curse to management scientists, Smith and Winkler (2006) offered 

compelling examples.  Suppose you select one of two projects for investment.  The assets have 

the same expected value, but this fact is unknown to you.  To make your choice, you first 

estimate their NPVs.  While accurate (unbiased), your estimates are imprecise.  Each assessment 

has a 50% chance of being optimistic and a 50% chance of being pessimistic.  There are four 

possible outcomes: 

 

• You underestimate the value of both projects (25% chance) 

• You overestimate the value of one project and underestimate the value of the other one 

(50% chance) 

• You overestimate the value of both projects (25% chance) 

 

You select the project with the highest estimated value, so 75% of the time you overestimate the 

worth of your investment.  
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Now suppose you select one of three projects, and to present a vivid case, they are worth the 

same: $100 million.  Your evaluation of each project is accurate (unbiased), but imprecision is 

75%, the same average error Cha et al. (2013) discovered when studying the evaluations of 

compounds finishing development.  Figure 4 shows the results.  The solid curve is a probability 

distribution of the possible evaluations of each project.  The dashed curve is a probability 

distribution of the highest estimate, and its mean is $163 million.  Even though the valuations are 

unbiased, your assessment of the compound you choose overstates value, on average, by $63 

million. 

 

 

Figure 4: The solid curve is a probability distribution that shows possible eNPV 

valuations for each of three projects.  The evaluations are imprecise (the standard 

deviation of the curve is $75 million), but the errors are unbiased.  The dashed curve 

is a probability distribution of the maximum of the three estimates.  Its expected 

value is $163 million.  On average, you overestimate the worth of the selected 

project by 63%.  

 

 

 

To see how the optimizer’s curse affects drug development look at Figure 3.  If you rank projects 

by their NPV forecasts and fund down the ranking, your choices will contain more overestimate 

than underestimate, unless you fund 100% of compounds.  You will overvalue your portfolio and 

subsequently suffer disappointment.  This disenchantment is the optimizer’s curse. 

 

Using Monte Carlo analysis, I estimated the overvaluation suffered when selecting phase II 

compounds to advance downstream (Summers 2018).  I assumed the forecasting errors of Figure 

2 and an exponential distribution of NPV, which while highly skewed, is less skewed than Figure 

1.  Using a simple model of a two-armed parallel group trial, I randomly assigned to each 

compound a probability of surviving phase III, denoted by 𝑃𝑇𝑆.  Finally, I ranked projects by 

their forecasted expected values, 𝑒𝑁𝑃𝑉𝐹 = 𝑃𝑇𝑆 ∗ 𝑁𝑃𝑉𝐹.  I assumed all compounds incur the 

same cost of phase III trials, so the ranking is equivalent to ordering assets by ROI or another 
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bang-for-the-buck metric.  Figure 5 presents the results.  It shows the overestimate in portfolio 

value as a function of phase II’s success rate (throughput).  Industry-wide, 34% of phase II 

compounds advance (Hay et al. 2014), and for this throughput, Figure 5 estimates that phase III 

portfolios are overvalued by 45% (problem 2). 

 

 

 

 

Figure 5: At the gate to phase III, overvalued compounds are more likely to 

advance than undervalued compounds.  The curve shows the resulting overestimate 

in portfolio value as a function of phase II’s success rate. 

 

 

 

Problem 3: Imprecise profit forecasts reduce portfolio value by at least 15%  

Overestimating compounds’ and portfolios’ values are secondary effects of a pernicious 

problem.  Imprecise NPV estimates depress productivity. 

 

To estimate the loss, we must define selection errors.  A market false-positive is advancing an 

unprofitable compound, and a market false-negative is canceling a profitable one.  A technical 

false-positive is advancing an unsafe or ineffective compound, and a technical false-negative is 

canceling a safe and effective one.  We will focus on market selection errors. 

 

For a specific compound, we would define profitability by considering its cost, but because our 

analysis occurs at the phase level, we will use averages.  For compounds being considered for 

phase III trials, historical data (Grabowski et al. 2002; DiMasi et al. 2003) exposes the expected 

cost of creating one new drug to be 45%𝑁𝑃𝑉̅̅ ̅̅ ̅̅  (Summers 2018).  A profitable compound 

produces profits that exceed this investment, 𝑁𝑃𝑉𝑇 > 45%𝑁𝑃𝑉̅̅ ̅̅ ̅̅ , while an unprofitable one 
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yields less, 𝑁𝑃𝑉𝑇 ≤ 45%𝑁𝑃𝑉̅̅ ̅̅ ̅̅ .  For the distribution of profits in Figure 1, 48.5% of compounds 

at the gate to phase III are profitable. 

 

Now suppose you forecast NPV for each compound, set a cutoff value and advance only those 

compounds with estimates that exceed the cutoff.  If your assessments were errorless, you would 

set the cutoff value at 45%𝑁𝑃𝑉̅̅ ̅̅ ̅̅ , advance every profitable compound, cancel every unprofitable 

one and thereby maximize value.  Unfortunately, forecasts contain large errors, so some 

unprofitable compounds have high evaluations, some profitable ones have low evaluations, and 

however you set the cutoff, you will commit some selection errors. 

 

 

 

 

Figure 6: The percent of selection decisions that are errors when ranking 

compounds by forecasted NPV (𝑁𝑃𝑉𝐹) and funding down the ranking.  The curves 

arise from the distribution of NPVs in Figure 1 and the forecasting errors of Figure 

2.  At a minimum, 30% of decisions are selection errors. 

 

 

 

Assuming Figure 1’s distribution of value and Figure 2’s estimation errors, which reasonably 

characterize drug development, Figure 6 illustrates the selection errors that occur when 

advancing phase II compounds.  With 100% throughput, no compound fails.  False-negatives are 

absent, but 51.5% of decisions are market false-positives.  With no throughput, market false-

positives are absent, but 48.5% of decisions are market false-negatives.  In between, adjusting 
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the cutoff value trades false-positives for false-negatives.  Because of imprecise forecasts, at 

least 30% of decisions are selection errors.1 

 

Studies of clinical trials often present selection errors as rates.  The market false-negative rate is 

the percentage of profitable compounds that executives cancel, while the market false-positive 

rate is the percentage of unprofitable compounds that executives advance.  For phase II’s 34% 

success rate, Figure 6 indicates a market false-negative rate of 47% and the market false-positive 

rate of 17%.  Also, 75% of the advancing compounds are profitable, up from the 48.5% of phase 

II compounds. 

 

You wish to maximize value, not to minimize the number of selection errors.  Advancing a 

slightly unprofitable compound is hardly harmful, but canceling a blockbuster is disastrous.  

Suppose you estimate each compound’s value, 𝑁𝑃𝑉𝐹, and its probability of technical success, 

𝑃𝑇𝑆.  Here are two methods of choosing compounds for phase III: 

 

• 𝑒𝑁𝑃𝑉𝐹: You multiply each compound’s forecasted NPV by its probability of technical 

success to create an expected NPV, 𝑒𝑁𝑃𝑉𝐹 = 𝑃𝑇𝑆 ∗ 𝑁𝑃𝑉𝐹.  Then you set a cutoff value 

and advance only those compounds with 𝑒𝑁𝑃𝑉𝐹 above the cutoff.  This is a 

compensatory selection method because a high value of one metric can compensate for a 

low value of the other metric.  (Decision trees more accurately fold costs into values, but 

this simpler procedure is fine for my analysis.) 

 

• Two-screen cutoff: You set two cutoff values, one for 𝑃𝑇𝑆 and another for 𝑁𝑃𝑉𝐹, and 

advance only those compounds with estimates that surpass both cutoffs.  This is a 

noncompensatory approach.  A low value on either metric cancels a compound, 

regardless of the value on the other metric.  This two-screen method is like the fast and 

frugal heuristics that beat “optimal” selection rules at some classification tasks 

(Katsikopoulos 2011). 

 

Can the two-screen cutoff beat 𝑒𝑁𝑃𝑉𝐹?  Recall, reasonable estimates of the market false-

negative and false-positive rates, based on historical data, are 47% and 17%.  Meanwhile, 

common goals of phase II trial designs are technical false-negative and false-positive rates of 

20% and 5% (Lindborg et al. 2014).  The market error rates are much higher, suggesting that 

drug development faces more market uncertainty than technical uncertainty.  Perhaps, 

multiplying the NPV forecasts by the probabilities of technical success corrupts the good 

technical information and thereby causes numerous selection errors.  By keeping the information 

                                                           
1 Because compounds with small true NPVs has small errors, the model 𝑁𝑃𝑉𝐹 = 𝑁𝑃𝑉𝑇(1 + 𝜀), produces 

unrealistic behavior when throughput nears 100%.  To avoid this problem, I made Figure 6 by using a 

lognormal model (Chen and Dyer 2009).  For the same level of market uncertainty, the lognormal model 

sets the minimum error at 30%, while the original model sets the minimum at 29%.  
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separate, the two-screen method may commit fewer errors, and perhaps, create more value as 

well. 

 

I tested this hypothesis with Monte Carlo analysis (Summers 2018).  Selecting compounds based 

on their true expected values, 𝑒𝑁𝑃𝑉𝑇 = 𝑃𝑇𝑆 ∗ 𝑁𝑃𝑉𝑇 , produces the maximum value available in 

a scenario.  My study measured the amount of available value lost to imprecise forecasts when 

selecting compounds by 𝑒𝑁𝑃𝑉𝐹 and the two-screen cutoff.  To measure the minimum loss these 

techniques can produce, I used the optimal cutoff values for each method.  Figure 7A shows a 

scenario where development costs, forecasting errors and the distributions of 𝑃𝑇𝑆 and 𝑁𝑃𝑉𝑇 

match common values for the selection gate that precedes phase III.  The 𝑒𝑁𝑃𝑉𝐹 method slightly 

outperforms the two-screen cutoff, and while not shown in the figure, it is more robust as well, 

beating the two-screen approach for a wide range of cutoff values.  Although 𝑒𝑁𝑃𝑉 is superior, 

its advantage is small.  If the two-screen method helps executives achieve consensus or justify 

their decisions, using it is reasonable. 

 

 

 

            

Figures 7A (left) & 7B (right): Estimated via Monte Carlo analysis (Summers 

2018), these graphs show how imprecise NPV forecasts affect the value of a phase 

III portfolio.  The curves show the value lost by three selection methods: (a) 

expected NPVs made from Bayesian adjusted forecasts (𝑒𝑁𝑃𝑉𝐵𝐹), (b) expected 

values made from traditional NPV forecasts (𝑒𝑁𝑃𝑉𝐹) and (c) the two-screen cutoff 

method.  The horizontal axis is the size of forecasting errors, 𝑆𝐷(𝜀).  Recall, at the 

gate to phase III, the errors are 𝑆𝐷(𝜀) > 75%.  The charts represent two scenarios: 

the high cost of drug development, 50%𝑁𝑃𝑉̅̅ ̅̅ ̅̅  (7A), and a lower cost, 27%𝑁𝑃𝑉̅̅ ̅̅ ̅̅  

(7B), that might characterize other industries. 
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Figure 7B presents the results for Figure 7A’s scenario but with development costs decreased by 

almost half.  As imprecision increases, the two-screen cutoff outperforms 𝑒𝑁𝑃𝑉𝐹, thereby 

demonstrating the above hypothesis.  In industries with highly skewed profits, development cost 

below those of pharmaceuticals, which characterizes most industries, and large forecasting 

errors, preferring the two-screen cutoff to 𝑒𝑁𝑃𝑉𝐹 is rational. 

 

Returning to the question that began this section: How much productivity is lost because of 

imprecise forecasts of NPV?  Figure 7A shows that errors typical of drug development (𝑆𝐸(𝜀) >

75%), reduce productivity by at least 15% (problem 3). 

 

In one sense, the comparison is unfair.  I prevented the two-screen cutoff from exploiting its 

most significant advantage – using any metric of market potential, not just NPV.  Available 

information may reliably estimate the maximum profit a drug could produce.  A high maximum 

is a necessary, but not sufficient, condition for substantial profits, so this metric can eliminate 

unprofitable compounds while creating few market false-negatives.  It could be a useful screen, 

especially upstream in development and discovery. 

 

Notice the solid lines in Figures 7A and 7B.  They display the benefits of the technique presented 

below.  This technique reduces the productivity loss by half, and it removes all biases in 

estimates of compounds’ and portfolios’ worth.  You will see this solution next. 

 

 

A solution to all three problems 

We must defeat three defects: (1) biased forecasts, (2) overvalued portfolios and (3) productivity 

lost to imprecise estimates.  Smith and Winkler (2006) proposed a strategy that fixes the first two 

flaws while mitigating the third. 

 

Momentarily ignoring its details, applying their strategy to pharmaceuticals simple.  You begin 

by creating your ordinary forecast, and then you define a reference class.  Every compound is a 

member of a technical category, such as a therapeutic area (cardiovascular) or a mechanism 

(statins) and a market category, such as a novel drug, label expansion or me-too compound.  

Form these categories, identify the reference class that best exemplifies the drug, but define the 

class broadly enough to contain many members.  Then derive Figures 1 and 2 (in mathematical 

form) from the class’s historical data.  Finally, combine your original forecast with Figures 1 and 

2 via Bayes’ law. 

 

Abstracting further, Figure 1 presents data about a class of compounds, while your typical NPV 

forecast produces data about a member of this class, called a case.  Having both case and class 

data is powerful.  Studies by Nobel laureates Daniel Kahneman and Amos Tversky, and scientist 

Dan Lovallo, find that case estimates are habitually optimistic.  Especially for projects, case 
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estimates overestimate value while underestimating cost and risk (Kahneman and Tversky 1982; 

Kahneman and Lovallo 1993; Lovallo and Kahneman 2003).  These scholars recommend 

assessing a project’s qualities by adjusting the case estimate with class data.  Smith and Winkler 

(2006) implement this advice with Bayes’ law.  Their technique removes biases from forecasts, 

dispelling the optimizer’s curse, to correctly value portfolios, while reducing forecasting errors, 

improving selection and raising productivity. 

 

 

 

 

Figure 8: A forecast estimates a compound’s value to be $2.5 billion.  Because the 

estimate is imprecise and above the average value (𝑁𝑃𝑉̅̅ ̅̅ ̅̅ ), it is likely to be 

optimistic.  The solid line is a probability distribution of the compound’s true NPV, 

given the forecast.  It combines the forecast (case data) with Figure 1 (class data) 

while accounting for the forecast’s imprecision (𝑆𝐷(𝜀) = 75%).  The distribution’s 

mean, $1.7 billion, estimates value without bias, and using this estimate minimizes 

evaluation errors, which improves selection and creates value.  The dashed line 

shows a range of possible forecasts that a sensitivity analysis might produce.  It is 

centered on the forecast and has an error of ±75%𝑁𝑃𝑉𝐹.  Sensitivity analysis 

poorly approximates the solid line, and decisions based on its results will err. 

 

 

  

Here is an example.  Suppose you estimate a compound’s NPV to be $2.5 billion, with 

imprecision of 𝑆𝐷(𝜀) = 75%.  The compound’s reference class has an exponential distribution 

of value (somewhat less skewed than Figure 1) with an average NPV of $1 billion.  Integrating 

these qualities via Bayes’ law produces the solid curve in Figure 8.  It is a probability distribution 

that shows possible true NPV’s, given your forecast.  Notice its shape.  The true NPV could 

exceed the forecast, but most likely, it is inferior.  This distribution’s average (expected) value is 

an unbiased estimate of the drug’s true NPV.  It is $1.7 billion, 32% below the original forecast.  
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Using this estimate eliminates bias and minimizes forecasting error.  If you apply the procedure 

to all your compounds, you will exercise optimism from your portfolio and value it correctly.  By 

minimizing error, you will improve selection and create more valuable portfolios as well. 

 

Sometimes, using expert opinion or sensitivity analysis, analysts will propose a range of 

estimates of a compound’s value.  Figure 8’s dashed line illustrates one possible range, centered 

on the forecast, with an error of ±75%𝑁𝑃𝑉𝐹.  By comparing the dashed and solid lines, you can 

see the forecast’s optimistic bias and the range’s incorrect estimate of imprecision.  The 

mismatch arises because the dashed line presents a distribution of forecasts, but the solid line 

presents a distribution of true values.  The dashed line answers the question: What are the 

possible forecasts of this compound’s NPV?  The solid line answers the question: Given our 

forecast, what are the possible true values of this asset?  Presenting the dashed line as an estimate 

of the true value makes the same mistake as claiming statement C implies statement D.  An 

expert in decision analysis would distinguish the lines of Figure 8 as follows: sensitivity analysis 

creates the dashed line; the solid line requires a value of information calculation. 

 

Sensitivity analysis can help you improve forecasting as follows.  If historical data is unavailable 

for estimating Figure 2, you can estiamte it with sensitivity analysis.  However, you must avoid 

underestimating the imprecision (Russo and Schoemaker 1992). 

 

To measure the benefits of the Bayesian adjustment, I tested it in the aforemented Monte Carlo 

analysis.  For thousands of randomly created forecasts and errors, which produce 𝑁𝑃𝑉𝐹, I 

applied the Bayesian technique to create new estimates, 𝑁𝑃𝑉𝐵𝐹.  Then I created Bayesian 

adjusted expected values, 𝑒𝑁𝑃𝑉𝐵𝐹 = 𝑃𝑇𝑆 ∗ 𝑁𝑃𝑉𝐵𝐹 and selected compounds with the optimal 

cutoff value for this metric.  Figure 7A reveals the results.  For the imprecision of pharmaceutical 

forecasts, for drugs in development (𝑆𝐷(𝜀) > 75%), the Bayesian adjustment reduced the 

productivity lost by about 50%.  As Figure 7B shows, when development costs are smaller, the 

improvement is even greater. 

 

Why is the Bayesian technique successful?  Being compensatory, expected value trades 

probability of technical success for NPV and vice versa.  Without the Bayesian adjustment, too 

much of the trade-off is erroneous, sacrificing some probability of success for forecasting error, 

for the last term of 𝑁𝑃𝑉𝐹 = 𝑁𝑃𝑉𝑇 + 𝜀𝑁𝑃𝑉𝑇.  This erroneous trade-off explains why the 

performance of 𝑒𝑁𝑃𝑉𝐹 degrades sharply as forecasting errors increase.  The Bayesian 

modification reduces errors, which mitigates the problem. 

 

As a general strategy for decision-making, combining class and case data integrates two distinct 

perspectives while infusing more information into your estimates.  It resolves uncertainty. 
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Conclusion 

Throughout my career, experts in decision analysis, whom I admire, advised me to distinguish 

good decisions from good results.  They claimed that good decisions maximize expected value, 

but that bad luck can cause lousy outcomes.  This reasoning is risky.  It invites people to blame 

poor results on chance, instead of studying decision methods to find flaws and opportunities for 

improvement.  Business situations are too multifaceted for any rational person to believe that all 

aspects of it are considered, thereby leaving luck as the sole source of poor results.  

Opportunities to improve decision-making always exist. 

 

In drug development, an underperforming portfolio might be dismissed as a misfortune, perhaps 

because outcomes occur years after decisions, which makes learning hard.  However, drug 

development portfolios consistently underperform, not because of chance, but because of the 

optimizer’s curse – selection based on imprecise metrics creates optimism.  Unless you adjust 

NPV forecasts, your portfolios will routinely disappoint you. The Bayesian adjustment solves the 

problem by mining historical data, and it thereby exemplifies the analytic innovations 

proliferating in many industries. 

 

Recall the three previously mentioned selection criteria: two-screen cutoff, expected value, and 

Bayesian adjusted expected value.  The two-screen cutoff provides a method of managing 

uncertainty, and in some situations, it beats expected values built from traditional forecasts.  

However, the two-screen cutoff gains scant benefit from the Bayesian technique, because for 

compounds in the same reference class, it leaves rankings unchanged.  In contrast, expected 

values benefit mightily from the Bayesian adjustment, and these modified values produce the 

best selection.  The implication is fundamental.  Accommodating uncertainty is less effective 

than resolving it. 
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